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We consider the response of the hydrodynamic drag on a body in rectilinear motion 
to a change in the speed between two steady states, from U, to Uz 2 0. We consider 
situations where the body generates no lift, such as occur for bodies with an axis of 
symmetry aligned with the motion. At large times, the laminar wake consists of two 
quasi-steady regions - the new wake and the old wake - connected by a transition zone 
that is convected downstream with the mean speed U,. A global mass balance indicates 
the existence of a sink flow centred on the transition zone, and this is responsible for 
the leading-order behaviour of the unsteady force at long times. For the case of 
U, 2 0, the force is shown to decay algebraically with the inverse square of time for any 
finite Reynolds number (Re), and this result is also shown to hold for non-rectilinear 
motions. A recent analysis for small Reynolds number including terms to U(Re) 
(Lovalenti & Brady 1993a) has indicated that the force decays as the inverse square of 
time for motion started from rest, but decays exponentially for a change between two 
positive velocities. The former result is found to be correct, but the exponential decay 
at U(Re) in the latter case is superseded at large times by the inverse-square time decay 
which is shifted to U(Re2) because the wake flux is nearly constant for small Re. The 
cases of reversed flow (U,  < 0) and stopped flow (U,  = 0) are treated separately, and 
it is shown that the transient force is dominated by the effects of the old wake, leading 
to a slower decay as the simple inverse of time. The force is determined by the far 
regions of the flow field and so the results are valid for any (symmetric) particle, bubble 
or drop and (in an average sense) for any Re, provided T + max {Re, Re-'}, where the 
time 7 is made dimensionless with the convection timescale. The analytical results are 
compared to detailed numerical calculations for transient flow over spherical particles 
and bubbles and compelling agreement is observed. These are believed to be the first 
calculations which adequately resolve the transient far wake behind a bluff body at 
long times. The asymptotic result for the force is applied to determine that the 
approach to terminal velocity of a body in free fall is also as the inverse square of time. 

1. Introduction 
The drag on a body in transient motion has been of long-standing interest. It is 

relevant to such simple questions as the time-dependence of the velocity of a body in 
free fall, but it is particularly important in multiphase flows, where the transient 
hydrodynamic force plays a significant role in particle motions. Typical multiphase 
flows such as occur in spray combustion, fluidized beds, sedimentation, pneumatic 
transportation and slurry transportation are characterized by particle Reynolds 
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numbers (Re, based on relative velocity) in a range from less than unity to hundreds, 
while particle concentrations range from quite dilute to near close packing. Even for 
dilute suspensions in which particle-particle collisions may be neglected, the transient 
behaviour of the fluid force on a particle in this range of Reynolds numbers is not 
known. Analytical approaches to the full time-dependent problem have been restricted 
to zero or small Reynolds numbers and to spherical or spheroidal bodies. 

The long-time behaviour of the hydrodynamic drag is of particular interest, since it 
determines the long-time statistics of random particle motions, including such 
important quantities as the particle diffusivity in turbulent flow (Reeks & McKee 1984; 
Mei, Adrian & Hanratty 1991) and velocity autocorrelations in Brownian motion 
(Hinch 1975). The classical approach using the Stokes equations yields a history force 
whose kernel decays as the inverse square root of time t (Basset 1888; see (1) below). 
This implies that a disturbance in velocity results in a decay of the transient force as t-l". 
However, the low Reynolds number limit is known to be singular, and Sano (1981) has 
used matched asymptotic expansions to show that for an impulsively started motion 
at small Re the transient part of the force decays much more quickly, as the inverse 
square of time at long time. Mei and coworkers have used finite-difference solutions of 
the Navier-Stokes equation to determine the transient force at finite Re, and have 
obtained results which are consistent with the inverse-square decay (Mei, Lawrence & 
Adrian 1991 ; Mei & Adrian 1992; Mei 1994), as well as results which indicate a faster, 
possibly exponential, decay of the kernel at long times (Mei 1993). Lovalenti & Brady 
(1993~-c) have considered quite general particle and drop motions at small Re; their 
analysis indicates that Sano's result is a rather special case and exponential decay may 
be expected in other situations. Rigorous analytical results are all restricted to zero or 
asymptotically small Re and there remains considerable uncertainty as to which, if any, 
can be generalized to apply to finite Re (i.e. Re = O(O.l)-O( 100)). In the present work, 
we seek to address the question: Is the long-time decay of the transient hydrodynamic 
force (and hence transient particle velocity) exponential or algebraic, and what is the 
correct exponent at finite Reynolds number? We shall show that inverse-square decay 
is to be expected in general; the exceptional case occurs for suddenly stopped or 
reversed motion for which the particle interacts directly with its wake and the force 
decays as the simple inverse of time. For small Re, the inverse-square time decay occurs 
at O(Re2) and so was not observed by Lovalenti & Brady (1993 a, b) who retained terms 
only to O(Re). 

Basset (1888) considered the hydrodynamic resistance to motion of a sphere of 
radius a with velocity V(t) through fluid with viscosity ,u and density p at zero Reynolds 
number, and obtained the result 

F(t) = - 6npa V(t) - 

The first term on the right-hand side is a quasi-steady viscous resistance and the third 
term is a purely inertial resistance known as the added-mass force. The second term 
arises due to the diffusion of vorticity generated at the surface of the particle into the 
bulk of the fluid; it is variously known as the Basset force or history force. It is often 
convenient to consider a frame of reference in which the particle is fixed and the fluid 
moves with uniform velocity U(t) in the far field. The frame of reference of the particle 
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is non-inertial so there is an additional buoyancy-like term whose magnitude is given 
by the product of the acceleration and the mass of fluid displaced by the particle: 

For a step transition from U, to U2 at time zero, the acceleration is simply a Dirac delta 
function and, for t > 0, (2)  reduces to 

F(t) = 67c,uaU2 + 6(7~pp)~'' a2( U, - U,) t-l/'. (3) 
The linearized Navier-Stokes equations are somewhat tractable for spheroidal 

particles and semi-analytical expressions for the force have been obtained (Lawrence 
& Weinbaum 1988), while other geometries may be treated via boundary element 
methods (Pozrikidis 1989). A generalization of (3) applies to the long-time behaviour 
of the force on a particle of arbitrary geometry at zero Reynolds number (Williams 
1966 ; Lawrence & Weinbaum 1988 ; Lovalenti & Brady 1993 a)  : 

(4) 
where A is the dimensionless resistance tensor for the body in steady Stokes flow, and 
D is the diameter of the body. The t-li2 decay at long times is characteristic of zero 
Reynolds number flow, but the limit is singular, owing to the existence of an outer Oseen 
region where nonlinear effects are significant, so (4) is valid only for Re;' % 7 % 1, 
where 7 = (U2/a)  t is the dimensionless time and Re, = U,  D/v. In the present work we 
consistently use the radius a = $D to form the dimensionless time, while the Reynolds 
number is based on diameter, except where explicitly indicated by the notation Re,. 

There has been some success in extending the above results to small Reynolds 
number through the use of matched asymptotic expansions. Sano (1981) considered the 
force on a sphere in an impulsively started uniform flow (U ,  = 0) at small Reynolds 
number, and obtained the asymptotic result 

F(t) N 3npDA U, + : ( ~ p p ) " ~  D2A * A  * (U,  - U,) t-'", 

+&,Re: log Re, + O(Re:) (5 )  
in which the force has been made dimensionless with the steady Stokes drag 6xpaU2, 
the Reynolds number is Re, = U, a / v ,  and T = Re, 7 = ( U;/u )  t is a slow time variable. 
The long-time behaviour is characterized by an inverse-square decay : 

Recent work by Lovalenti & Brady (1993a) has made use of a general reciprocal 
theorem to obtain the force on a particle in arbitrary motion at small Reynolds number 
which may be written for a spherical particle as 

F(T)  - (1 +$Re,+&,Re:log Re,)+zRe, T-'. (6) 

F(T) - U(T) + +Re, U(7) + :Re, z ~ ( T )  + K-'/' 

where U(t) = u(t)- V(t)  is the difference between the velocity of the fluid in the 
neighbourhood of the particle u(t) and the particle velocity V(t), A relates to the 
magnitude of the relative displacement between times s and 7, 
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and U ( s ) ,  U'(s) are the components of the velocity at time s, respectively parallel and 
perpendicular to the displacement vector 4 7 ,  s). Our scaling is the same as for Sano's 
result ( 5 )  with U, representing a characteristic velocity. 

Lovalenti & Brady (1993~) also obtained a long-time representation for the force on 
an arbitrary particle at small Reynolds number. This is somewhat complicated, but the 
specialization to a step-change in rectilinear velocity from U, = a,, U,  to U, is of 
particular interest. The O(Re,) correction to the steady Stokes drag $,, on a particle 
with no lift may be written as 

F,(T) = $Re, &AT). (9) 

In the special case of an impulsive start from rest, AT) takes the identical form to the 
square-bracketed term in Sano's result (5) for all time. In other cases, the long-time 
behaviour is given by 

The final case corresponds to suddenly stopped motion (U,  = 0), so the Reynolds 
number and timescale are necessarily based on U,. An interesting feature of Lovalenti 
& Brady's work is the qualitative difference between the case where either U, or U,  is 
zero and the case of a transition between two finite speeds. In the former case, the force 
decays algebraically in time (as T-' or T-'), while in the latter case, the force decays 
exponentially in time. 

The available evidence concerning the long-time decay of the force at finite Reynolds 
number (Re, = 0(0.1)-0(100)) is somewhat mixed. The older literature contains a 
number of different ad hoc approaches (see Clift, Grace & Weber 1978). Recent 
numerical work has focussed on three different canonical forms of U(t) for flow past 
a sphere: a small fluctuation about a steady flow (Mei et al. 1991 ; Mei & Adrian 1992), 
a large-amplitude oscillation with zero mean (Mei 1994), and an impulsive change in 
velocity from U,  2 0 to U, > 0 (Mei 1993). 

Mei & Adrian (1992) proposed the following decomposition for the time-dependent 
force on a rigid sphere in rectilinear motion at finite Reynolds number: 

(1 1) 

FQ,S'(t) = 6xpaU(t) $(Re,), (12) 

FH(t) = 6xpa K(t, s; Re,) U(s) ds, (13) 

~ ~ ~ ( t )  = $xpa3U(t) ,  (14) 

FFS(t) = 4xpa34t ) .  (1 5 )  

F(t> = FQS(t) +&f( l )  + & M ( l )  + &S(t ) ,  

with contributions from the quasi-steady drag 

the history force 

L 
the added mass force 

and the 'buoyancy' force due to the acceleration of the free stream 
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The Reynolds number Re,(t) = 2aU(t)/v is based on the diameter of the sphere and the 
instantaneous relative velocity, and the factor $(Re,) accounts for the deviation from 
the Stokesian drag law. Clift et al. (1978) have compiled several different correlations 
for $ of which the best are 

1 +&Re,, 0 < Re, < 0.01 

$(Re,) = 1 +0.1315Re~s2-0.05w , 0.01 < Re, < 20 (16) [ 1 +0.1935Rek6305, 20 < Re, < 260, 

with w = log,, Re,. Mei & Adrian (1992) proposed the following approximation for 
the history force kernel based on the numerical results of Mei et al. (1991) for small 
oscillations about a mean flow, and an asymptotic analysis of the same flow at small 
Reynolds number 

K( t ,  s) Fz { ( t  - .)I1" + [ ( ( t  - 112}z, 
2av fH 

with &(Re,) = 0.75+0.105ReD(s). The t-1/2 behaviour for small times was shown to 
be asymptotically correct, but the t-' decay at long times is an artifact of the 
interpolation procedure (Mei 1993; Lovalenti & Brady 1993b). It is consistent with 
Sano's (1981) result, but not with the more recent results of Lovalenti & Brady 
(1993a, b),  which indicate exponential decay of the kernel at long times, at least for 
small Reynolds number. 

Mei (1993) has computed the force for an impulsively started flow or a step change 
in velocity, in which case Ureduces to a delta function, so the kernel of the history force 
(13) can be found directly by subtracting the quasi-steady component (12) from the 
total force ( 1  1 ) .  The detailed numerical result is reasonably consistent with the kernel 
obtained from the linearized problem given in (17), although the very long-time 
behaviour of the computed force was somewhat uncertain: it could be interpreted 
alternatively as an algebraic decay somewhat faster than the inverse square of time, or 
as a slow exponential decay. In the case of a large-amplitude oscillatory flow with zero 
mean (Mei 1994), the approximation (17) gave very good results for the history force 
at moderate and high frequencies with finite Re,. At low frequencies, however, (17) 
gives only the correct order of magnitude of the oscillatory history force, while Basset's 
expression ( 1 )  leads to a substantial over-prediction of the history force at finite 
Reynolds number. Thus, the long-time behaviour of K(t, s) is not known for the most 
general case. 

The objective of the present work is to contribute to a resolution of the questions 
posed above by deriving general results for the long-time behaviour of the drag on a 
body which undergoes a transition in velocity. The approach follows closely the 
analysis of the steady wake elucidated by Batchelor (1967). The hydrodynamic force 
is determined in terms of the gross features of the flow field through the application of 
global conservation principles, without the need for a detailed analysis of the flow in 
the vicinity of the body. The features of the flow field are discussed in $2,  new 
asymptotic results for the force are derived in $3,  and these results are compared with 
detailed numerical solutions for the force. The principal asymptotic result confirms t-2 
decay of the force for both unidirectional and non-parallel changes in the velocity; the 
cases of reversed and suddenly stopped flow are treated separately, and the force is 
shown to decay as t-l. In 54 the asymptotic results are applied to determine the 
approach to terminal velocity of a body in free fall which is also found to follow t-' 
decay. The new results are summarized and discussed further in $5.  The details of the 



312 C. J.  Lawrence and R .  Mei 

flow field predicted by asymptotic analysis and finite-difference computations will be 
presented in a companion paper (Mei & Lawrence 1994). 

As this work was completed, the authors became aware of the Appendix by E. J. 
Hinch added to Lovalenti & Brady (1993~) .  The strategies used below to derive 
analytical results for impulsively started and stopped flow are essentially identical to 
those used by Hinch. Hinch’s analysis focuses on small values of Re and correctly 
reproduces Lovalenti & Brady’s long-time results (10) including the exponential time 
decay for transitions between two finite speeds. However, Hinch’s (and Lovalenti & 
Brady’s) results are not uniformly valid for large times because they do not include a 
higher-order change in the mass flux deficit of the wake, which though very small 
eventually becomes dominant. 

2. Features of the flow field 
We consider a body moving without lift. This occurs, for example, if the body has 

an axis of symmetry aligned with the motion. For the purpose of analysis it is 
convenient to consider a body fixed in a flow which is spatially uniform in the far field. 
The two situations are mathematically identical apart from the buoyancy term due to 
the acceleration of the fluid, as noted in (2) above. The velocity field for steady flow 
past a body is dominated at large range by three principal features: the uniform 
oncoming velocity U,, the steady wake of the body which directs a net flow Q, towards 
the body, and a consequent simple source flow of strength Q, centred on the body. 
These features are illustrated in figure 1. A global accounting of the balance of mass 
and momentum for the control volume shown by dashed lines in figure 1 leads to a very 
simple relationship between the force on the body and the wake flux: 

4 = PU, Qi- (18) 

When the flow speed is changed to a new value U,, the old wake will be convected 
downstream, but will remain steady relative to a frame moving with speed (U,- U J ,  
and a new wake will be generated in the region immediately downstream of the body. 
This configuration is illustrated in figure 2. After a sufficiently long time has elapsed, 
the new wake will become quasi-steady in the region 0 < x < U,t, and the old wake 
will persist in the region x > U,  t. There will be a roughly spherical transition zone 
(labelled TZ in figure 2), which grows as (vt)’” and moves downstream with speed U,, 
in which the two wakes are joined smoothly. The two wake regions are characterized 
by a balance between advection and cross-stream diffusion of vorticity; in the 
transition zone this balance is modified by streamwise diffusion. 

The volume flux in the old wake persists as the old value Q,, while that in the new 
wake is Q,; both fluxes may be found from the corresponding steady drag (18): 

Qi = &/(put), i = 1,2. (19) 

The two fluxes will not in general be equal, so the mass balance must be completed by 
a sink flow centred on the transition zone at x = U, t of strength Q, - Q, (a source if 
Q, c Q,). The large-scale features of the flow field at long time may thus be represented 
as in figure 2. Of particular significance is the absence of nonlinearity in the far field; 
the principal components of the flow all derive from linear theory and so may be 
superposed without direct interaction. 

In the special case of start-up from rest, the old wake is absent and Q, = 0. The 
source near the body and the sink in the transition zone are of equal strength Q,, 
forming a dipole which is gradually stretched out. For a body moving through still 



FIGURE 1. The principal long-range features of the steady flow past a body. 

fluid, the starting sink is left behind while the body carries the source flow with it. The 
distance between the source and sink is U, t,  and at distances much greater than U, t 
the flow field is simply given by a potential dipole of strength Q, U, t = (Fg) / t .  

3. The unsteady force on the body 
3.1. Analysis 

The unsteady force on the body may be obtained using a global momentum balance 
as in the steady state, with the additional feature that the unsteadiness of the flow 
should be explicitly accounted for by an integration of the fluid acceleration over the 
whole control volume. A detailed description of the leading-order asymptotic flow field 
in the new wake, the old wake and the transition zone will be presented elsewhere (Mei 
& Lawrence 1994). For our present purpose, it is sufficient to know that the integration 
over a large control volume of size much greater than U, t as shown in figure 2 leads 
to the quasi-steady result F = 6 = pU, Q,. This can be seen if we use the appropriate 
integral form of the momentum equation: 

puu-ndA = i .a.ndA, 
Jc"putdv+ s,, JCS 

where u is the streamwise-component of the local velocity u, iis a unit vector in the flow 
direction and n is the outward normal to the control surface. The leading-order 
solution for the velocity consists of a quasi-steady new wake in 0 < x < U, t,  a quasi- 
steady old wake for x > U ,  t ,  a source of strength Q, centred on the particle, a source 
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of strength (Q,-Q,) centred on the transition zone, and a localized disturbance 
velocity field u* (say) to account for the details of the transition zone. Owing to the 
linearity of the far field, u* is an odd function with respect to the centre of the transition 
zone x = U2 t and so does not contribute to the volume integral. The volume integral 
may then be simplified to 

where L represents the length of the control volume. Since the control volume is very 
large compared to U z t ,  the source terms may be combined into a single source of 
strength Q, and the surface integrals yield terms analogous to the steady state (18), 
namely pU, Q, and F respectively. 

We are left with the conclusion that unsteady contributions to the force must derive 
from higher-order contributions to the wake or transition zone flow fields. A higher- 
order asymptotic analysis is quite tedious, but may be circumvented for present 
purposes by consideration of the smaller control volume, of size much greater than the 
body but much less than U, t ,  shown in figure 2. The flow field in this smaller volume 
is quasi-steady, but the mean flow is increased somewhat above U2 owing to the 
influence of the sink flow centred on the transition zone: 

Q2-e1 = U,(l+h). - u2 + 4n( U ,  t ) 2  

The force may then be obtained as the quasi-steady force corresponding to the 'local' 
speed U. 

It is convenient to represent the steady and quasi-steady forces in dimensionless 
form, based on the low Reynolds number drag, as in (12) and (16) above 

F,, = 3quDU$(Re,). (21) 

Qi = 3 ~ v D $ ~ ,  (22) 

We then obtain the wake flux from (19) as 

where $i  = $(Re,) and Rei = Ui D / v  with i = 1 or 2. The dimensionless local velocity 
increment due to the sink is then given by 

in which 7 = tUz/a is the dimensionless time. 
We decompose the force into steady and transient parts: 

F(7) = ~ ~ C P D U ~ ( $ ~  + $d7>>, 

in which the transient part is found from (21) as 

$* = ( 1  + 4 $ ( ( 1 + 4 R e , ) - $ ,  - 4$ ,+Re2$2 ,  A + 1 ,  (25) 
where $'(Re) is the derivative of $ with respect to Re and 4; = $'(Re2). Finally we have 
the principal result of this paper: 

3 

Re2 
(26) 

where we note that $1 is taken to be zero for the case of start-up from rest (U,  = 0). 

A m - -  ($2 + Re, $2 ($2 - $1) 7-,? 
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This result (26) indicates that the transient force should decay to the steady drag as the 
inverse square of time, $ H  cc 7-' for any finite Reynolds number, whether the initial 
velocity is zero or not. 

For very small Reynolds numbers, the quantity $ is linear in Re,, $ - $o + Re, $;, 
where the subscript zero indicates evaluation in the limit Re+O, so there is a near 
cancellation due to $, - 4, in (26). For a spherical particle, we may use the asymptotic 
result of (16) for $, so that if the initial velocity is non-zero (26) simplifies to give 

(27) 
where T = Rear = ( U i / v )  t and a,, = IU,/U,l is the ratio of the initial to the final 
velocity. In the case of flow started from rest, we use the value = 0, so there is no 
cancellation in (26). For the case of a spherical particle at small Reynolds number, we 
use $, - $o = 1 and recover the long-time form of Sano's (1981) result: 

$ H  - &( 1 -a,,) T-' = &Re:( 1 - a,') T-,, 

In either case (27) or (28), the decay of the force is as the inverse square of time, but 
the coefficient changes from O(Re,) for impulsively started flow to O(Re:) for non-zero 
initial velocity. The asymptotic analysis of Lovalenti & Brady (1993a, b)  is accurate 
only to O(Re,) and so is unable to capture the correct long-time behaviour exhibited 
in (27). 

The case of non-parallel flow may also be addressed within the present framework 
provided that there is no lift in either steady configuration. For example, the body may 
reorient so as to keep its axis of symmetry parallel to the flow, or both flow directions 
may coincide with axes of symmetry as for a spherical body. If U, and U, are non- 
parallel vectors, the flow field sketched in figure 2 would be changed in that the old 
wake would be rotated about an axis in the transition zone to align with U,. The details 
of the flow in the transition zone would change considerably, but the strength of the 
sink would still be Q, - Q,. The argument leading to the result (26) for the force would 
not be affected, and so we would obtain exactly the same result as above, with di 
representing the magnitude of the respective steady drag forces. The direction of the 
force remains parallel to U,. Thus, the essentially axisymmetric theory is able to 
provide useful results for non-axisymmetric flows, which would be quite difficult to 
obtain numerically. If there were a change in direction of the motion without a change 
in the drag, the two wake fluxes would be equal, and (26) yields zero for the history 
force. This is a degenerate case, and higher-order terms would need to be considered 
in both the wake and the outer potential field. It seems likely, however, that the history 
force would still decay algebraically, although faster than t-, .  

In the case of a complete flow reversal (U,  < 0), the old wake will be upstream of the 
particle, and will be swept back towards the body. The flow speed near the body is 
increased, owing to the flux in the old wake, by an amount which scales with l / t  at long 
times. From Batchelor (1967) we may obtain the velocity in the old wake as 

Qil uil U -  uz+- 
4xvx ' 

where x is the distance from the apparent origin of the old wake which is swept 
downstream with speed (U ,  - U,), i.e. x = (U ,  - U,) t. In the notation of (29, h is given 
bv 
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h - d i  /I-- +3- 
2(1 +a12)r Re,? ' 

However, the sink term will not be very important: for an exact reversal of the flow 
( U ,  = - U,), it will be zero; for large Reynolds number it will be small because of the 
factor Re;'; and for small Reynolds number, there is a near cancellation in the factor 
($2-q51). So we use the simpler form (30) to obtain 

The different nature of the force for reversed flow may be partly responsible for the 
relatively poor performance of Mei & Adrian's (1992) approximation for the history 
force in the case of large-amplitude oscillations at low frequency (Mei 1994). It seems 
that this peculiarity may also be related to the non-analytic form of the steady drag law 
with respect to flow reversals (Benjamin 1993). In the general context of multiphase 
flows, particle trajectories are not likely to be rectilinear, so the probability of 
instantaneous flow reversal is small, and the result (26) may be more useful than (32). 

The case in which the flow is suddenly brought to rest (U,  = 0) is somewhat different, 
since the new wake is absent, and the transition zone grows around the body. We may 
expect that the force will be dominated by the effects of the old wake, as in reversed 
flow, but note certain differences. The velocity in the part of the old wake adjacent to 
the transition zone will be simply 

while the velocity on the opposite side of the transition zone will be zero. In general, 
the transition zone is merely a diffusive connection between the old wake and the new 
wake, and the velocity at its centre is precisely the mean of the wake velocities on either 
side (Mei & Lawrence 1994). In the present case, the body sits in the centre of the 
transition zone, so it sees an ambient velocity given by one half of (33). Thus the force 
on the body is given by 

d H  id0 dl (34) 

where do gives the drag on the body at zero Reynolds number. In this case, there is no 
steady contribution to the drag, so (34) gives the leading-order behaviour. For small 
Reynolds number flow, (34) reduces to the result of Lovalenti & Brady (1993a), 

For multiphase flows involving heat transfer or chemical reaction, the particle 
Reynolds number may change because of a change in the temperature or chemical 
structure of the fluid. The effect of such a change may be somewhat different than the 
effect of a sudden change in velocity. To illustrate this, we consider the effect of a 
sudden change in Reynolds number caused by a change in the dynamic viscosity of the 
fluid (at t = 0) while the velocity and density remain constant. For such a change, we 
use (20)-(22) to obtain 

/ I - 3  (2, 
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FIGURE 3. The transient component of the force in impulsively started flow past a sphere (V ,  = 0). 
(a)  Re, = 0.1, (b) Re, = 1, (c) Re, = 10, ( d )  Re, = 40. -, Numerical; ........., long-time 
asymptotic; -----, Mei & Adrian (1992); -.-.-.- , small Re (Sano 1981). 

and the history force is obtained from (25) as 

The history force again decays as T - ~  for long time. However, since $ /Re  is a decreasing 
function of Re, an increase in Reynolds number here leads to a source of strength 
3xD(v1q5,-v24,) in the transition zone, compared to a sink when the Reynolds 
number increases owing to a change in velocity. Clearly, it is not possible to 
characterize the dimensionless history force in terms of the Reynolds number alone. If 
the Reynolds number increases because of an increase in velocity, the history force is 
positive; if the increase is due to a decrease in viscosity, the history force is negative. 

3.2. Computational results for flow past a sphere 
The long-time asymptotic results (26), (32), (34), (37) derived above may be compared 
with detailed numerical solutions of the full Navier-Stokes equations for flow past a 
sphere (Mei & Lawrence 1994). Finite-difference computations have been performed 
using the scheme described by Mei (1993) with additional grid refinement in the 
transverse direction within the wake. Considerable caution was required in the 
discretization of the system in order to resolve the features of the flow field shown in 
figure 2, and to retain accuracy in the computation of the force up to very long times. 
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FIGURE 4. The transient component of the force in impulsively changed flow past a sphere (V, > 0). 
(a) Re, = 0.1, Re, = 0.3 (a,, = 1/3). (6) Re, = 0.8, Re, = 1.0 (a1, = 0.8). ( c )  Re, = 10, Re, = 15 
(al2 = 2/3). (d) Re, = 40, Re, = 60 (al2 = 2/3). (e) Re, = 40, Re, = 10 (al2 = 4). --, Numerical; 

1993~). 
........ ., long-time asymptotic; -----, Mei &Adrian (1992); -.-.-.- , small Re (Lovalenti & Brady 

To the best of our knowledge these are the first adequately resolved computations of 
a strongly transient flow past a bluff body at long times. 

Figure 3 shows a comparison of the numerical and long-time asymptotic result (26) 
for the transient component of the force q5H due to impulsively started flow (al2 = 0). 
The asymptotes are determined from (26) with $z obtained from the numerical solution 
for steady flow and q5; obtained from the empirical relation (16). Selected values of 4' 
were computed using numerical solutions for adjacent steady states and found to agree 
closely with the derivative of the empirical function. For each Reynolds number, the 
history force initially decays as 7-l" given by Basset's result, and gradually changes to 
the asymptotic 7+ decay at large times. 
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The wake analysis is formally valid so long as the length of the new wake is much 
bigger than the transition zone which in turn is much bigger than the particle, i.e. 
U,  t 9 ( t ~ t ) ~ ”  % D. In dimensionless form, this translates to the requirement that 
7 9 max(Re, l/Re}, and we see that this requirement is in general necessary for the 
asymptotic result to be accurate. Sano’s (1981) small-Re asymptotic result is very 
accurate for the smallest Reynolds number shown (Re = O.l), and remains useful up 
to Re = 1. The approximation given by Mei & Adrian (1992) is qualitatively correct in 
each case, although it does not give the correct coefficient of the 7-2 decay. 

Figure 4 shows the results for a step change with different values of al, and Re. 
Actually shown is the history force kernel defined by (1 1) and (13) or, more simply, 

(38) 

Figures 4(a)-4(d) are for an increase in velocity with a,, < 1, while figure 4(e) is for 
a decrease in velocity with a12 = 4. The qualitative features of the curves are all the 
same, and similar to those of figure 3 ;  there is a transition from Basset’s 7 - l I 2  decay at 
small times to the new 7-’ decay at long times, with a slight bulge in the force before 
it falls off to the long-time asymptote. Again, we see that Mei & Adrian’s (1992) 
approximation performs quite well in each case, with a substantial quantitative error 
only when the history force itself is quite small. 

The case of small Reynolds number (Re, = 0.1, Re, = 0.3) shown in figure 4(a) is of 
particular interest. We see that Lovalenti & Brady’s (1993 a) solution is qualitatively 
correct only up to 7 - 100. The long-time 7-, decay of the present theory is strongly 
evident in the numerical result, although there is a short period around 7 - 100 when 
the history force decreases rapidly, and this is clearly related to the exponential decay 
of Lovalenti & Brady’s (1993~) result. Since the O(Re) contribution decays 
exponentially, it is swamped by the O(Re2) contribution at large times and, as with 
Basset’s (1888) solution, Lovalenti & Brady’s (1993~) solution ceases to be 
asymptotically correct when T is large. Formally this occurs for 7 = O(Re-’ log Re-’), 
although in figure 4(a) it appears that the small-Re asymptotic solution is useful up to 
T = O(Re-’). 

The numerical results presented in both figure 3 and figure 4 are not perfectly 
resolved. Since no special treatment of the initial Stokes boundary layer was made, 
there is some oscillation evident at small times, but this quickly dies away, and does not 
affect the history force at longer times, which is dictated by the strength of the sink in 
the transition zone. At very long times, the resolution of the transition zone is not 
sufficient, so none of the numerical results is accurate for a dimensionless time greater 
than about 300. 

The contrast between the cases U,  > 0 and U, = 0 is even more apparent in figure 
5(a), where we plot JCJ, the magnitude of the coefficient of the inverse square decay 
q5H - C7-2, as a function of Re, for different values of a12. The coefficients vary very 
little over the range of Reynolds numbers from 0 to 250, with the notable exception of 
the curve for al, = 0, which is strongly singular for small Re,. The curves for a,, > 0 
are paired at small Reynolds number according to the value of 11 --al,[ and it is 
notable that the paired curves remain close even for relatively large values of Re,. The 
strong overall similarity between the curves for a,, > 0 in figure 5(a) is brought out 
further in figure 5(b) where we plot the coefficient from the history force kernel 
C/(1 -al,). This quantity varies very little over the range 0.1 < a,, < 4 and 
0 < Re, < lo2, showing that the long-time response of the force is almost linear with 
respect to the two velocities for this range of parameters, and the history force (19) may 
be approximated by the simpler formula $H - 0.1(1- al,) 7-,. Figure 5 was prepared 

4 H  = (1 - a121 K(7)- 
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FIGURE 5. Variation of the coefficient in 4, = C? with Reynolds number and velocity ratio. (a) ICJ, 
values of a,, from top curve to bottom: 0, 4, 0.1, 1.9, 2/3, 4/3, 0.9, 1.1. (b)  C/(1 -al2), values of aI2 
from top curve to bottom: 0.1, 2/3, 0.9, 1.1, 4/3, 1.9, 4. 
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FIGURE 6 .  The transient part of the drag for reversed flow past a sphere. Re, = 10, 
Re, = 10 (al2 = 1). -, Numerical; ........, long-time asymptotic. 

using the approximate form (16) of the steady drag law for a sphere; this results in 
discontinuities as Re, and Re, cross the connecting values of 0.01 and 20. 

Next, we examine the results for flow reversal and arrest. Figure 6 shows the 
transient part of the drag for exactly reversed flow (al2 = 1) for a moderate Reynolds 
number (Re = 10); we see that equation (32) gives very good agreement at long times. 
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t 

FIGURE 7. The drag for impulsively stopped flow past a sphere (U,  = 0). Re, = 10. 
-, Numerical; . . . . . . . ., long-time asymptotic. 

FIGURE 8. The transient part of the drag for a sudden change in viscosity. Re, = 10, Re, = 15. 
-, Numerical; . . . . ., long-time asymptotic. 

Figure 7 shows the total force on a sphere in a flow which is suddenly brought to rest 
(34). In this case, the very strong oscillation in the initial transient is a direct result of 
incorrect treatment of the initial conditions, but does not affect the long-term result. 
In fact, the computations for flow reversal and stoppage are more robust at large times 
than the step-change cases, because the 7-1 decay leads to a larger magnitude of Q I H  and 
numerical errors are less significant. 

Figure 8 shows the history force for a change of Reynolds number from 10 to 15 
resulting from a sudden change in viscosity. Good agreement is again observable 
between the numerical and long-time asymptotic result (37). It is also noteworthy that 
the history force is constant for small time in contrast to the T - ~ / ~  variation for a sudden 
change in the particle velocity. Since there will be no added mass force in this case, the 
total force is not singular at small times, but has a step change followed by a gradual 
relaxation to the new steady state. In general, changes in velocity and fluid properties 
may occur simultaneously. The present result shows that the history force is dominated 
at small times by changes in velocity, but the long-time behaviour may be affected by 
changes in either velocity or viscosity which contribute terms of order 7-2 of opposite 
signs. 
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FIGURE 9. The transient component of the force in impulsively started flow past a spherical 
bubble at Re, = 5 and 40. -, Numerical; . . . . . ., long-time asymptotic. 

Finally, we compare the long-time asymptotic result (26) with numerical results for 
flow over a spherical bubble with a sudden change in velocity (Mei, Klausner & 
Lawrence 1994). The computations are very similar except that the no-slip condition 
is replaced by a zero shear boundary condition for the bubble. Although the wake 
behind a bubble is smaller and weaker than for a rigid particle, the general features 
depicted in figure 2 are the same so (26) remains valid. An approximate expression for 
$(Re) has been proposed (Mei et al. 1994) as 

2 3.315 -l 

3 [ Re, l2  ( Re$')] ' 
$bubble = -+ -+Oo.75 1 +- (39) 

which reduces to $bubble = g +  Re,/12 for small Re, and to $bubble = 2-4.42Rei1l2 for 
large Re,. Equation (39) compares very well with numerical results for finite Re, (Mei 
& Klausner 1992). Figure 9 shows the history force for impulsively started flow past 
a bubble at Reynolds numbers of 5 and 40; the long-time asymptotes obtained from 
(26) and (39) are seen to be consistent with the finite-difference results. For small time 
the history force is constant in contrast to the Basset tP/' behaviour for a solid body. 
It is noted that the transient force is much smaller for a bubble than for a solid sphere 
at a given Re,, because of the much weaker wake. Hence it is more difficult to 
accurately capture the effect of the sink in the transition zone for the case of a bubble 
and the numerical error may be larger. 

4. A body in free fall 
The new results may be used to obtain long-time solutions to simple problems such 

as the approach to terminal velocity of a body in free fall (cf. Lovalenti & Brady 
1993 a). If a body of mass m is released from rest at t = 0, its velocity V will satisfy the 
equation of motion 

(40) 

where mf is the mass of fluid displaced by the body and F(t) is given by a generalization 
of ( 1  1) for a non-spherical body. The quasi-steady drag is 

m P = ~ ( t )  + (m-mf)g ,  

FQS(t) = - 3npD v(t) (41) 
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the history force is generalized to 

FH(t) = - 3npD K(t, s; Re,) ‘ci(s) ds, i: 
and the added mass force is given by 

where K depends only on the geometry and takes the value a for a sphere. In this 
example FFs is absent since the fluid is at rest. 

The terminal velocity, V,, is determined from 

where $, = $(Re,) and the terminal Reynolds number is Re, = VT D/v.  We make (40) 
dimensionless using velocity scale V, and timescale a/ V,, and use v for dimensionless 
velocity to obtain 

(45) 

with inertia parameter /3 = (2/3n)(m + Kmf) ( VT/pD2) = $Re,(m + Kmf)/ms, where m, is 
the mass of fluid displaced by a spherical body of diameter D. 

The result for the force due to a step change in velocity (26) may be generalized to 
obtain the history force kernel for the case when the particle velocity has been (nearly) 
constant for a long time after an arbitrary variation: 

$(Re,) u = q5, -pi, - K(7, s; Re,) i,(s) ds L 

The form of (46) arises from a distributed line sink whose strength corresponds to the 
rate of change of the wake flux with position in the far wake. The wake flux is 
determined from the quasi-steady formula Q(x) = 6nva4(x) so the incremental sink 
strength associated with time s is dQ(s) = 6nva$’(Re,(s)) Re, i,(s) ds, and the distance 
from the particle is x = as :  v(s’) ds’. 

What 7 is very large, the velocity will have almost reached its terminal value and the 
history integral may be broken into three parts: 

I = Il + I ,  + I3 = K(7, s; Re,) u(s) ds + K(7, s; Re,) i,(s) ds I L-‘ 
+ K(7, s; Re,) 4.9 ds, (47) 

with 7 g CT % 1. The approximate form of the kernel (46) may be used in Zl and I,, while 
the form appropriate to I3 is not known exactly, but must possess the small-time 
behaviour exhibited in (1 7). 

We assert that for large 7,  the velocity defect is algebraically small, 

A = I - v  = U(rP)  

with IZ > 1, which may be checked a posteriori. Then an order of magnitude analysis 
indicates that the contribution from Zl is 0(7-,), from Z, is O ( ~ - , C T - ~ )  and from I3 is 
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0(7-n-1cr1’2), so we are left to approximate Z,, which we do by replacing the 
displacement integral by its asymptotic behaviour s: v(s’) ds’ - 7 : 

We note that for self-consistency we must take n = 2, and that zj = 0(7F3), so that 
the direct effect of inertia (p2j in (45)) is negligible. We simplify (48) further using 
Re(7) - Re, and $(O) = 0, and substitute into (45) to obtain 

Finally, we use a Taylor expansion in (49) and solve approximately for small A to 
obtain the velocity 

For small Re, (50) is in agreement with equation (7.10) of Lovalenti & Brady (1993 a) 
provided we use only the leading-order behaviour $, - 1. 

The velocity perturbation in (50) may be seen to arise directly from the effect of the 
starting sink. In dimensional form, we have 

v= v,- QT 

4 K (  VT t ) 2 ’  

with terminal wake flux Q ,  = 6xua4,. 
We have demonstrated that the approach to terminal velocity of a body in free fall 

is as the inverse square of time, and this seems to be a universal feature of the long- 
time behaviour for a body in non-reversing motion. The direct contribution of inertia, 
,8v in (45), has been neglected in (49), so the final approach to terminal velocity is 
dictated entirely by the history force and the result is independent of the inertia 
parameter p. We can use the result (50) directly to find that the inertia term is negligible 
provided that 

Fo! a bubble or a solid particle in a liquid, the mass ratio is typically of order unity, 
so the result (50) is valid for 7 + Re,. For a particle or droplet in gas, however, the 
mass ratio is typically of order 1000, and (50) will be valid only for extremely long 
times; this simply means that the history force is not so important in aerosol 
suspensions. It has been shown by Mei (1993) for droplets in a gas that even an 
impulsive acceleration such as may be caused by the passage of a shock wave leads to 
a negligibly small history force. 

5. Conclusion 
Our principal results are for the long-time behaviour of the drag on a particle due 

to a change in the free-stream velocity from U, to U,. For an impulsively started flow, 
or a change between two positive speeds, the force approaches the steady value with 
inverse-square time decay (26), determined by a simple sink which is generated during 
the sudden transient and is advected away from the body by the mean flow with 
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velocity U,. This result is also valid for a non-parallel change in the flow direction, and 
is almost universally valid. The exceptional cases are an instantaneous reversal of the 
flow (32) and ail impulsively stopped flow (34), for which the force approaches the 
steady value as 7-' owing to the effect of the old wake. The results for the history force 
may be summarized as 

1 

u1 < 0, u2 > 0, 

u, > 0, u2 = 0. 

These results are based only on the gross features of the flow in the far field, and so 
do not depend on the geometry of the body, nor do they require that the near wake 
should be steady or even laminar (Batchelor 1967). However, they are based on the 
assumption that there is no lift, i.e. the hydrodynamic force is parallel to the velocity. 
The wake of a body which generates lift is more complex (Landau & Lifschitz 1987, 
pp. 67-72) and generates a more complex outer potential field; the extension of the 
present results to consider such three-dimensional wakes is the subject of continuing 
study. Thus the results are valid for a variety of bluff bodies at any Reynolds number 
with the restriction that 7 % max{Re, Re-'}. They are probably most useful for steady 
laminar wakes in axisymmetric flow with Reynolds numbers in the range 0.1-100, 
where the time restriction is not too stringent. 

We have also obtained new numerical solutions of the Navier-Stokes equations for 
flow past a sphere with a sudden change in the free-stream velocity or viscosity. The 
resolution of these calculations is superior to previous work (Mei 1993) and allows 
direct comparison with the asymptotic results up to very large times as shown in figures 
3-9. The computational results agree very well with the asymptotic results at large 
time, and provide a quantitative estimate of the error incurred in applying the 
asymptotic results at finite time. Calculations for reversed flow and impulsively 
stopped flow have not been previously reported, and show interesting and unique 
features. The details of the flow fields obtained in the numerical calculations are to be 
described in a companion paper (Mei & Lawrence 1994) and compared with results of 
an asymptotic analysis. 

The low Reynolds number range is of particular interest since rigorous asymptotic 
results are available for the whole time history of the force. Results for a solid sphere 
are shown in figure 3(a) for Re = 0+0.1 and in figure 4(a) for Re = 0.1 + 0.3. There 
is a long time period when the force follows the zero Reynolds number inverse-square- 
root decay of the Basset force, but this ceases at a time of O(l/Re) when the wake 
extends into the Oseen region, and there is a transition to inverse-square decay as 
predicted above. Sano's (198 1) result, and therefore Lovalenti & Brady's (1993 a) 
result, for start-up from rest perform very well in comparison to the numerical 
solution. For a non-zero initial velocity, Lovalenti & Brady's (1993 a) result indicates 
exponential decay, but this is not valid at r = O(Re-' log Re-') owing to the dominance 
of terms of O(Re2). There is a region of faster decay, connecting the two algebraic 
asymptotes, but the long-time inverse-square decay is apparent for 7 > Re-'. 
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We have applied our asymptotic results to the approach to terminal velocity of a 
body in free fall, and shown that the velocity also decays as the inverse square of time 
(50). This result is explicitly independent of the inertia parameter /3, which may be 
surprising at first sight. However, at sufficiently long times, the inertia of the particle 
is smaller than the accumulated inertial effect of the fluid embodied in the history force, 
so the approach to steady state is governed entirely by the fluid, independent of the 
particle inertia. 

The results presented in this paper are quite simple, but may be of considerable use. 
First, they serve as a stringent test for the accuracy of time-dependent Navier-Stokes 
solvers. Indeed, the numerical results presented above were only obtained after we 
understood the important role played by the moving sink in the wake and sufficiently 
resolved the flow fields in the new and old wakes and the transition zone. Earlier results 
(Mei 1993) had indicated a decay faster than the inverse square of time, possibly even 
exponential; this was due to inadequate resolution of the far wake which depletes the 
strength of the sink. More importantly, the new results provide considerable insight 
into the mechanisms responsible for the transient force at moderate Reynolds number 
and may serve as a guide in the construction of approximate formulae for the 
representation of the transient force on a particle in an arbitrary transient flow. The 
form proposed by Mei & Adrian (1992) is not universally valid since it seeks to use a 
quasi-linear representation to describe a suite of nonlinear problems. However, its 
qualitative features, in particular the tP2  decay of the kernel at long time, are supported 
by our new results, at least in cases without flow reversal. 
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at the University of Illinois at Chicago for their hospitality. 
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